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Acoustique, Universit́e de Corse, Faculté des Sciences, BP 52, 20250 Corte, France
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Abstract. Scattering of waves and particles from two- and three-disc systems with discrete
C2v andC3v symmetries is studied for various boundary conditions. Resonances are numerically
determined, and partially classified by using the irreducible representations of the symmetry
groups. New physical effects are expected (splitting up of resonances and resonances of
interaction between the scatterers). Some of these effects can be observed on the far-field
form functions.

1. Introduction

In a previous paper [1], we have developed an exact formalism allowing us to calculate the
S-matrix, its scattering resonances and far-field form functions for systems with discrete
symmetries. Various boundary conditions on the scatterers, corresponding to mesoscopic
quantum physics, acoustics or electromagnetism, have been considered.

In this second part of our work, we are more particularly concerned with the
determination of the resonances of the two- and three-disc systems with discreteC2v andC3v

symmetries. In section 2, the scattering resonances (poles of theS-matrix) are numerically
determined and partially classified for various configurations. Some interesting effects, such
as splitting up of resonances and resonances of interaction between the scatterers, can be
directly observed on the corresponding far-field form functions. In section 3, experimental
and theoretical extensions of our work are considered.

2. Study of scattering resonances and discussion

2.1. SymmetryC2v

We present in figures 1–4 the locations of the resonances for Dirichlet, Neumann, mixed and
elastic boundary conditions. In all cases, the centre-to-centre separationd = 6a. In the case
of mixed boundary conditions, the refraction indexn = 1.1. In the case of elastic boundary
conditions, tungsten carbide cylinders immersed in water are considered. The computations
were carried out for the following parameters: water (ρ = 1 g cm−3, c = 1480 m s−1), and
tungsten carbide (ρ ′ = 13.80 g cm−3, cL = 6860 m s−1, cT = 4185 m s−1).
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Figure 1. Location of the scattering resonances in the complexka-plane. (SymmetryC2v ,
Dirichlet boundary condition, separation distanced = 6a.) Resonances corresponding to one
single disc are represented by open circles (◦). Resonances of the representationsA1, A2, B1

andB2 are respectively denoted by (∗), (•), (×) and (+).

Figure 2. Location of the scattering resonances in the complexka-plane. (SymmetryC2v ,
Neumann boundary condition, separation distanced = 6a.) Resonances corresponding to one
single disc are represented by open circles (◦). Resonances of the representationsA1, A2, B1

andB2 are respectively denoted by (∗), (•), (×) and (+).
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Figure 3. Location of the scattering resonances in the complexka-plane. (SymmetryC2v , mixed
boundary conditions forn = 1.1, separation distanced = 6a.) Resonances corresponding to
one single disc are represented by open circles (◦). Resonances of the representationsA1, A2,

B1 andB2 are respectively denoted by (∗), (•), (×) and (+).

Figure 4. Location of the scattering resonances in the complexka-plane. (SymmetryC2v , elastic
boundary conditions for two tungsten carbide cylinders immersed in water, separation distance
d = 6a.) Resonances corresponding to one single cylinder are represented by open circles (◦).
Resonances of the representationsA1, A2, B1 andB2 are respectively denoted by (∗), (•), (×)
and (+).
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Resonances are distributed along certain curves in the complexka-plane. A physical
interpretation of these different curves can be obtained using semiclassical approximations
in quantum mechanics or high-frequency approximations in acoustics and electromagnetism.
The two-disc problem for Dirichlet boundary condition has already been treated by Vattay,
Wirzba and Rosenqvist [2–4] by including, in the Gutzwiller trace formula, diffractive
periodic orbits due to creeping waves. The case of Neumann boundary condition could be
treated by changing slightly their formalism. In contrast, in the context of the more general
physical problems examined in this paper, the construction of a periodic orbit theory seems
to be a formidable task. Indeed, the existence of transmitted contributions inside the discs
and, in addition to Franz waves [5], the presence of new families of surface waves (due
to the coupling between the discs and the external media) significantly complicate that
problem.

In the case of elastic boundary conditions, it should be noted that far from the real
ka-axis the distribution of resonances is very close to the distribution corresponding to a
Neumann boundary condition. In contrast, for−0.4 . Im (ka) . 0, new features occur.
All the resonances generated on a single isolated cylinder by the Rayleigh surface wave
and the whispering gallery surface waves disappear because of the interactions between the
two cylinders. They are split up into four new resonances, each one corresponding to an
irreducible representation ofC2v.

We have partially classified the resonances of the two-disc scatterer. They lie in four
distinct families associated with the four irreducible representationsA1, A2, B1 andB2 of
the symmetry group of the scatterer. It would be interesting to obtain a full classification of
the two-disc scatterer resonances. With this aim in view, algebraic topology which provides
a classification of paths in terms of homotopy groups could be useful. Indeed, this full
classification should be surely based on the free product ofZ by Z, the fundamental group
of the plane with two disjoint holes [6].

2.2. SymmetryC3v.

We present in figures 5–8 the locations of the resonances for Dirichlet, Neumann, mixed and
elastic boundary conditions. In all these cases, the centre-to-centre separationd = 6a. In
the case of mixed boundary conditions, the refraction indexn = 0.8. In the case of elastic
boundary conditions, tungsten carbide cylinders immersed in water are considered. The
splitting up of resonances occurring in the case of elastic boundary conditions is detailed in
figure 9.

Cross sections and locations of resonances are shown in figures 10–13 for a small
interdisc distanced = 2.15a. Dirichlet, Neumann and mixed (n = 1.33) boundary
conditions are considered. The smooth variations of the averaged total cross section with
ka are due to interferences between the waves scattered by the discs. Furthermore, rapid
variations of sharp characteristic shape can be observed. They correspond to complex
resonances near the realka-axis and can be associated with the geometrical periodic orbit
of figure 14. For a Dirichlet boundary condition, such sharp characteristic shapes have also
been observed and interpreted by Gaspard and Rice [7]. In the case of mixed boundary
conditions, the splitting up of resonances can be directly observed on the averaged total
cross section (see figures 12 and 13).
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Figure 5. Location of the scattering resonances in the complexka-plane. (SymmetryC3v ,
Dirichlet boundary condition, separation distanced = 6a.) Resonances corresponding to one
single disc are represented by open circles (◦). Resonances of the representationsA1, A2 and
E are respectively denoted by (∗), (•) and (♦).

Figure 6. Location of the scattering resonances in the complexka-plane. (SymmetryC3v ,
Neumann boundary condition, separation distanced = 6a.) Resonances corresponding to one
single disc are represented by open circles (◦). Resonances of the representationsA1, A2 and
E are respectively denoted by (∗), (•) and (♦).
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Figure 7. Location of the scattering resonances in the complexka-plane. (SymmetryC3v , mixed
boundary conditions forn = 0.8, separation distanced = 6a.) Resonances corresponding to
one single disc are represented by open circles (◦). Resonances of the representationsA1, A2

andE are respectively denoted by (∗), (•) and (♦).

Figure 8. Location of the scattering resonances in the complexka-plane. (SymmetryC3v , elastic
boundary conditions for three tungsten carbide cylinders immersed in water, separation distance
d = 6a.) Resonances corresponding to one single cylinder are represented by open circles (◦).
Resonances of the representationsA1, A2 andE are respectively denoted by (∗), (•) and (♦).



ExactS-matrix forN -disc systems: II 7897

Figure 9. Zoom in on figure 8 in the domain Re(ka) ∈ [6, 26] and Im(ka) ∈ [−0.016,−0.001].
Splitting up of resonances.

Figure 10. SymmetryC3v , Dirichlet boundary condition, separation distanced = 2.15a. (a)
Averaged total scattering cross sectionσ tot . (b) Corresponding scattering resonances in the
complexka-plane.
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Figure 11. SymmetryC3v , Neumann boundary condition, separation distanced = 2.15a. (a)
Averaged total scattering cross sectionσ tot . (b) Corresponding scattering resonances in the
complexka-plane.

Figure 12. Symmetry C3v , mixed boundary conditions forn = 1.33, separation distance
d = 2.15a. (a) Averaged total scattering cross sectionσ tot . (b) Location of the scattering
resonances in the complexka-plane.
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Figure 13. Zoom in on figure 12. (a) Averaged total scattering cross sectionσ tot in the
domainka ∈ [28.7, 29.1] andσ tot ∈ [1.735, 1.770]. (b) Location of the scattering resonances
in the complexka-plane in the domain Re(ka) ∈ [28.7, 29.1] and Im(ka) ∈ [−0.015,−0.011].
Splitting up of resonances.

Figure 14. An example of geometrical periodic orbit trapped in the
three-disc system.

3. Conclusion and perspectives

In this paper, we have determined the scattering resonances of the two- and three-disc
systems with discreteC2v and C3v symmetries. It would be interesting to experimentally
confirm the expected physical effects such as, for example, the splitting up of resonances
and resonances of interaction between the diffusors. In electromagnetism, in the context of
microwave two-disc scattering, Kudrolli and Sridhar [8] observed resonances corresponding
to theA2 antisymmetric poles of theS-matrix. In acoustics, similar experiments in the case
of the three-disc scatterer are in preparation [9].

Furthermore, we would like to link our exact results with those obtained from
semiclassical approximations in quantum mechanics or high-frequency approximations in
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acoustics and electromagnetism. In the context of the three-hard-disc system, Gaspard
and Rice have studied the scattering of a point particle in the semiclassical approximation
using the Gutzwiller trace formula [10]. More recently, Vattay, Wirzba and Rosenqvist
[3, 4] (see also [2]) extend the Gutzwiller trace formula including diffractive periodic orbits
due to creeping waves. Their approach provides a good agreement between locations of
exact quantum mechanical resonances and locations of their semiclassical approximations.
Unfortunately, in the context of the physical problems examined in this paper, a periodic
orbit theory cannot be easily developed because of the existence of transmitted contributions
inside the discs and, in addition to Franz waves, the presence of new families of surface
waves. However, with this aim in view, the formalism developed in [11] in the context of
semiclassical quantization of billiards with mixed boundary conditions could be useful.

Finally, it would be interesting to consider the statistical characteristics of theS-matrix
previously obtained in order to emphasize the chaotic aspects of multiple scattering. The
random matrix description exploited by Fyodorov and Sommers [12] (see also references
therein) could be applied in the three-disc problem forka � k(d − 2a) � 1. Indeed, in
this case, the ‘internal’ and the ‘external’ parts of the scatterers are well defined and the
numbers of channels relating these two parts is small.
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